Version 22 (modified by 8 years ago) ( diff ) | ,
---|
GRASS GSoC 2016 Additional Image Segmentation Algorithms for i.segment
Student Name: | |
Bo Yang | |
Organization: | |
OSGeo - Open Source Geospatial Foundation | |
Mentors: | |
Moritz Lennert, Markus Neteler, Markus Metz | |
Title: | |
Additional segmentation algorithms for i.segment | |
Repository: | |
GRASS 7, browse at: i.segment |
16 – 21 May week 0: Setup coding environmental, get familiar with programming manual
What did you get done this week?
- Finished A small exercise too get more familiar with basic GRASS codes Because currently i.segment only provides one algorithm, the entire layout of the module GUI is related to that one algorithm. By modifying the codes in parse_args.c I added three inputs in the Required tab, then one tab per algorithm with algorithm-specific parameters.
- Reviewed some literature for mean-shift algorithm
- Deng, C., Li, S., Bian, F., & Yang, Y. (2015). Remote Sensing Image Segmentation Based on Mean, (1999), 179–185.
- Michel, J., Youssefi, D., & Grizonnet, M. (2015). Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 952–964. http://doi.org/10.1109/TGRS.2014.2330857
- Zhang, Q., Liu, C., Zhang, G., & Zhou, A. (2014). Adaptive image segmentation by using mean-shift and evolutionary optimisation. IET Image Processing, 8(6), 327–333. http://doi.org/10.1049/iet-ipr.2013.0195
- Zhou, J.-X., Li, Z.-W., & Fan, C. (2015). Improved fast mean shift algorithm for remote sensing image segmentation. IET Image Processing, 9(5), 389–394. http://doi.org/10.1049/iet-ipr.2014.0393
- Some discussions were made about the algorithm and literature
What do you plan on doing next week?
- Make clear understanding about the algorithm mechanism and write the pseudo codes for prototyping
Are you blocked on anything?
- Some issues happened during the compiling of the GRASS in Windows environmental. but with the help of community, the problem was later solved.
23 - 28 May week 1: Start coding, develop pseudo-code to outline the work
What did you get done this week?
- Further discussion about the algorithm mechanism (about the edge effect)
the solution of the edge effect: when the moving window located in the edge of the image, adaptively cut the moving window to fit the edge, because the weights are adaptively fit the number of pixels inside of moving windows, this number of pixels will vary for each window anyway depending on how many pixels are discarded because the spectral difference is larger than the spectral bandwidth. NULL cells are discarded anyway. Chopping off edges can be avoided for example for the very first pixel at row 0, col 0 by setting the window to those pixels east and south of the corner pixel. The new bandvalue is new value += weight * current value and weightsum += weight.
- Got the access for GRASS-addons-svn and sandbox
- Wrote the pseudo-code for the mean-shift algorithm
- Mentors reviewed pseudo-code and send the improved version
What do you plan on doing next week?
- Write the meanshift.c codes to implement the meanshift algorithm based on pseudo-code. there will be two parts, the mean-shift filtering part will be write based on the pseudo codes, and the second part--clustering to super-pixel will use some part of r.clump.
Are you blocked on anything?
- No, thanks for mentors modifying a more generic pseudo-code