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1 - The Canadian Spatial Data Foundry
The Context

• Many researchers in forestry, ecology and environment 
• Interested in habitat selection modelling

- Where do organisms prefer to live?
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Researchers must…
…learn lots of ArcGIS, to use only a few operations
…search for, download and assemble large datasets

- historical data are often lost
- data are delivered in many different formats

1 - The Canadian Spatial Data Foundry
The Problem

- data are delivered in many different formats
- datasets are too large to fit in one file (shp limited to 2 GB, complete 

forest cover for Canada is 30GB, complete DEM for Canada is 9 GB, etc…)

- computation is often too difficult for ArcGIS (800 buffers over 5 000 000 
polygons)

…struggle for weeks, if not months, to get their data table 
ready for statistical analysis…

In brief: researchers waste much energy on tasks 
unrelated to their main priority: research!!!



• Building a paying web service 
• Backed by a spatial database (PostGIS) hosted on a supercomputer
• Administrators upload preassembled datasets of ecological layers 

(vector & raster, historical data included)
• Users with accounts upload their datasets (shapefiles)
• Create intersection queries on the ecological layers

The Canadian Spatial Data Foundry
The Envisioned Solution
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• Obtain resulting shapefiles or tables (minutes, hours 
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The Canadian Spatial Data Foundry
What is a spatial database?

• DBMS with native support for the geometry type
- Normalisation
- Standard Query Language (SQL)
- Transactions & Rules
- Security & Backup 
- Functions & Operators 
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shapefile spatial DB
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polygon AB12
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polygon RT43- Functions & Operators 
(intersect(), within(), area(), 
=, &&, etc…)

- What is the area — and who is the owner — of properties located in district AB12?

• IBM DB2 Spatial Extender, Informix Spatial DataBlade, Oracle Spatial, 
PostgreSQL/PostGIS, ESRI's ArcSDE, Intergraph's GeoMedia

• What about raster?
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SELECT area(geometry), owner FROM properties, districts 
WHERE intersect(properties.geometry, districts.geometry) and district.id = “AB12”
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… …



• We have to be able to store not only “ideal” 
rectangular raster datasets…

landcover
tileId raster

Raster Support Requirements
1 - Storage of Non Rectangular Raster Coverage

“Ideal” Raster Dataset

“Real” Raster Dataset

• …but also “real” non-rectangular 
raster coverages

tileId raster
1 rasterBLOB
2 rasterBLOB
3 rasterBLOB
4 rasterBLOB
5 rasterBLOB
… …
53 rasterBLOB
54 rasterBLOB

e.g. SRTM Coverage for Canada 



Raster Support Requirements
2 - Easy Importation/Exportation

PostgreSQL
PostGISimport export

ecological layers

The way to import raster layers should not differ 
much from the way to import vector layers…



Raster Support Requirements
3 - SQL Functions & Operators on the Raster Type

• Raster Attributes
- area(), srid(), width(), height(), pixeltype(), pixelsize(), 

nodatavalue(), georeference(), etc…

• Raster Transformation
- reproject(), translate(), scale(), resample(), clip(), reclass(), 

mapalgebra(), etc…

• Raster Aggregation
- Merge of many rasters using GROUP BY (accum())

• Raster Conversion
- toJPEG(), toTIFF(), to KML(), toPolygon()…



• Categorical rasters layers convert 
well to vector layers
- one variable converts to one column
- groups together pixels of same value
- contiguous or not
- continuous raster layers do not convert as well

• Vector layers do not convert well to raster layers

Raster Support Requirements
4 - Lossless Conversion Between Vector and Raster Layers
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• Vector layers do not convert well to raster layers
- each attribute (e.g. type) must be 

converted to one raster
- no support for nominal values (e.g. “M34”)
- global values (area) lose their meaning
- overlaps are lost
- resolution must be high to match vector 

precision
- features lose their unique identities
- reconversion to the original vector is very difficult or impossible
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We need a better way to convert vector layers to rasters without destroying the objects’ identities



• In a vector layer, each object has its own identity
landcover

geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56
polygon 9 M34 24.54
polygon 5 M33 23.43
polygon 2 M32 12.34

… … … …

Raster Support Requirements
4 - Lossless Conversion Between Vector and Raster Layers

• In a raster layer converted from a vector layer, each object should conserve its 
own identity

- Each “raster object” has its own georeference
- Black pixels are “nodata values”
- Like vectors, raster objects may or may not overlap
- Raster algorithms can be used on the whole layer after a “blend” of the objects into a single raster

landcover
raster type mapsheet area
raster 4 M34 13.34
raster 3 M33 15.43
raster 7 M33 10.56
raster 9 M34 24.54
raster 5 M33 23.43
raster 2 M32 12.34

… … … …

Rasters become just another way to store 
geographic features in a more expressive 

vector object-oriented-like style



• The goal is to be able to use a single set of SQL functions & operators 
without worrying if data are stored in vector format or raster format.

- Same deployment strategy (SQL)
- No longer need to implement overlay operations in two different ways

Raster Support Requirements
5 - Seamless Spatial Operators & Functions 

on Vector and Raster Types
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- area(), intersections(), buffer(), within(), overlaps(), reclass(), transform(), 
centroid(), and many more…

geom ctype
polygon 4
polygon 3
polygon 5
polygon 2

… …

geom obsid
point 24
point 31
point 45

… …

geom obsid ctype
polygon 24 4
polygon 53 3
polygon 24 5
polygon 23 2

… … …

SELECT Intersection(Buffer(observation.geom, 1000), cover.geom) as geom, obsid, type
FROM observation, cover
WHERE Intersects(Buffer(point.geom, 1000), cover.geom)

∩∩∩∩ �

area
10.34
11.23
14.23
9.45
…

SELECT geom, obsid, ctype, Area(geom) as area FROM (

) result

geom obsid
polygon 24
polygon 31
polygon 45

… …

raster ctype
raster 4
raster 3
raster 5
raster 2

… …



Raster Support Requirements
6 - Storage of Raster Outside of the Database

• Goals:
- Provide faster access to raster files (JPEGs) for web applications
- Avoid useless database backup of large non-edited datasets
- Avoid importation (copy) of large datasets into the database

Web server

landcover
raster
raster
raster
raster
raster

…

Web server
Web service

SQL

Image01.jpg

JPEGs

Image02.jpg
Image03.jpg
Image04.jpg

…



Raster Support Requirements
What about Oracle GeoRaster?

• Stored as a relation between two types in different tables:
- images (SDO_GEORASTER for type, extent, rasterTable, id, metadata)
- blocks (tiles) (SDO_RASTER for block information)

• Supports:

images
id SDO_GEORASTER
1 type, extent, rasterTable1, id, metadata
2 type, extent, rasterTable2, id, metadata
3 type, extent, rasterTable3, id, metadata

…

rasterTable3 (blocks)
id SDO_RASTER
1 id, pyrLevel, band, row, col, MBR, BLOB
2 id, pyrLevel, band, row, col, MBR, BLOB
3 id, pyrLevel, band, row, col, MBR, BLOB

…

rasterTable3 (blocks)
id SDO_RASTER
1 id, pyrLevel, band, row, col, MBR, BLOB
2 id, pyrLevel, band, row, col, MBR, BLOB
3 id, pyrLevel, band, row, col, MBR, BLOB

rasterTable3 (blocks)
id SDO_RASTER
1 id, pyrLevel, band, row, col, MBR, BLOB
2 id, pyrLevel, band, row, col, MBR, BLOB

- bitmap mask
- two compression schemes
- three interleaving types
- multiple dimensions
- embedded metadata (colour table, statistics, etc…)
- lots of unimplemented features

• PostGIS PgRaster adopts a very similar approach

… …3 id, pyrLevel, band, row, col, MBR, BLOB
…

2 id, pyrLevel, band, row, col, MBR, BLOB
3 id, pyrLevel, band, row, col, MBR, BLOB

…



Raster Support Requirements
Does the Oracle GeoRaster’s architecture fulfill our requirements?

Requirement Yes/No Comments

1) Non-rectangular raster 
coverage

2) Easy import/export

3) SQL functions & operators 

Yes but

No

Yes

Creates as many tables as there are 
rasters. 1000 rasters = 1000 tables

Request manual table creation or 
FME ($$$)

Although limited

Not really…

3) SQL functions & operators 
on the raster type

4) Lossless vector/raster 
conversion

5) Seamless vector/raster 
spatial functions/operators

6) Out-DB Storage

Yes

No

No

No

Although limited

Really not designed for this…



PostGIS WKT Raster

Requirement Yes/No Comments

An Open Source project specifically designed to meet these requirements

1) Non-rectangular raster 
coverage

2) Easy import/export

Into a single table.

Very similar to PostGIS shp2pgsql.exe & 
pgsql2shp.exe (gdal2wktraster.py)

Yes

Yes

3) SQL functions & operators 
on the raster type

4) Lossless vector/raster 
conversion

5) Seamless vector/raster 
spatial functions/operators

6) Out-DB Storage

ST_Width(), ST_Height(), ST_BandPixelType(), 
ST_PixelSizeX(), ST_PixelSizeY(), ST_NumBands(), 
ST_BandNoDataValue(), ST_GDALGeoTransform(), 
ST_Resample(), ST_Clip(), ST_Reclass(), 
ST_MapAlgebra(), ST_AsJPEG(), ST_AsTIFF(), 
ST_AsPolygon(), etc…

Every raster (or tile) of a single coverage has its 
own georeference and hence can overlap other 
rasters.
ST_Area(), ST_SRID(), ST_Transform(), ST_Union(), 
AT_Accum(), ST_AsKML(), ST_AsSVG(), ST_Translate(), 
ST_Scale(), ST_Intersection(), ST_Intersects(), 
ST_Within(), ST_PointOnSurface(), &&, etc…

Only filepaths are stored in the database.

Yes

Yes

Yes

Yes



PostGIS WKT Raster Status
• Contributions

- Initial code base developed by Sandro Santilli, funded by Steve Cumming (UL, Canada) 
and Tyler Erickson (Michigan Tech Research Institute) 

- Basic functions, python importer, overviews and regular tiling code: Mateusz Loskot 
(CadCorp, UK)

- GDAL Driver foundation: Jorge Arevalo (Google Summer of Code spanish student)

• Version Beta 0.1 to be released soon. Will include:
- gdal2wktraster.py importer
- Overviews (multiresolution pyramids) support
- Accessor Functions (ST_SRID(), ST_Width(), ST_Height(), ST_PixelSizeX(), ST_PixelSizeY(), 

ST_RotationX(), ST_RotationY(), ST_UpperLeftX(), ST_UpperLeftY(), ST_ESRIWorldFile(), 
ST_GDALGeoTransform(), ST_NumBands(), ST_BandPixelType(), ST_BandNoDataValue())

- Basic Seamless Overlay Functions (ST_Intersects(), ST_Intersections(), ST_AsPolygon(), 
ST_Envelope(), ST_Shape())

- Spatial operators identical to the one on the geometry type (&&, &<, etc…)

- Out-DB raster registration with gdal2wktraster.py
- Well documented web site (doc & wiki specs, http://trac.osgeo.org/postgis/wiki/WKTRaster) 

• We also need your help! You can provide developer time or funds…



Introducing 
WKT Raster « Raster Objects »

• The fact that every raster in a PostGIS WKT Raster table 
has its own georeference and attributes, and is thus 
independent of other rasters in the table, is a very 
interesting characteric of those raster objects.

• Like vector geometries, raster objects:• Like vector geometries, raster objects:
- can overlap
- can change location
- can represent individual objects with their own identity

• Moreover, raster objects can be used to model real life 
objects better represented as small fields (like fires or 
fuzzy objects).

• Very new type of GIS object



Introducing WKT Raster Objects
Raster Objects vs Other GIS Objects

• Point and Line Coverages
• Polygon Coverages

- Objects represent a constant surface with an identity and 
properties (like an object in a OO context)

• Raster Object Coverages
- Constant Raster Objects (categorical)

� Objects represent a constant surface with an identity and properties (like a 
feature or an object)
Better modelled as polygon, but modelled as raster because they are better � Better modelled as polygon, but modelled as raster because they are better 
processed using existing raster algorithms (eg. landcover, basin)

� E.g.: land use; land cover; traditional raster objects that should overlap but can’t 
because they are in raster format (ex. buffers, animal territories)

- Variable Raster Objects (field)
� Objects represent a variable field that have an identity and properties
� Generally modelised as a unique raster and difficult to 

model as polygons
� E.g.: fire, fuzzy objects (lakes, land cover, forest 

stands, soil),  area of influence, animal territories

• Traditional Raster Coverages
- Represent a variable field with 

different values (no unique identity or other properties)
- E.g.: elevation, climate, etc…



Summary
• The Canadian Spatial Data Foundry should facilitate, via a web 

service, GIS intersection operations over large-scale ecological 
datasets (vector & raster)

• Oracle GeoRaster does not provide a good integration between raster 
and vector layer

• PostGIS WKT Raster aims to provide such an integration
- Support non-rectangular raster coverages
- Lossless conversion between raster & vector layers
- Seamless operators & functions on raster & vector types
- Storage of raster outside the DB
- Easy import/export similar to shp2pgsql.exe
- We need your help!

• WKT Raster introduces a new kind of GIS raster objects that 
are useful for modelling:

- categorical features needing raster algorithms
- fuzzy objects requiring their own identities



Thanks!

• http://trac.osgeo.org/postgis/wiki/WKTRaster
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