
The Canadian
Spatial Data Foundry

Pierre Racine
Professionnel de recherche
Département des sciences du bois et de la forêt

Boreal Avian
Modelling Project

Introduction to
PostGIS WKT Raster and

“Raster Objects”

1 - The Canadian Spatial Data Foundry
The Context

• Many researchers in forestry, ecology and environment
• Interested in habitat selection modelling

- Where do organisms prefer to live?

shape obsID

polygon 1

polygon 2

polygon 3

polygon 4

…

meanTemp

20.3

15.5

17.5

10.4

…

elevation

450.2

467.3

564.8

390.2

…

etc…

…

…

…

…

…

cutProp

75.2

26.3

56.8

69.2

…

etc…

Researchers must…
…learn lots of ArcGIS, to use only a few operations
…search for, download and assemble large datasets

- historical data are often lost
- data are delivered in many different formats

1 - The Canadian Spatial Data Foundry
The Problem

- data are delivered in many different formats
- datasets are too large to fit in one file (shp limited to 2 GB, complete

forest cover for Canada is 30GB, complete DEM for Canada is 9 GB, etc…)

- computation is often too difficult for ArcGIS (800 buffers over 5 000 000
polygons)

…struggle for weeks, if not months, to get their data table
ready for statistical analysis…

In brief: researchers waste much energy on tasks
unrelated to their main priority: research!!!

• Building a paying web service
• Backed by a spatial database (PostGIS) hosted on a supercomputer
• Administrators upload preassembled datasets of ecological layers

(vector & raster, historical data included)
• Users with accounts upload their datasets (shapefiles)
• Create intersection queries on the ecological layers

The Canadian Spatial Data Foundry
The Envisioned Solution

Web server
Web service

Supercomputer

• Create intersection queries on the ecological layers
• Obtain resulting shapefiles or tables (minutes, hours

or days later)

PostgreSQL
PostGIS

shapefiles

table or
shapefile

users’ layers

ecological layers

queries SQL

Users
Administrators

geospatial
data

intersections

The Canadian Spatial Data Foundry
What is a spatial database?

• DBMS with native support for the geometry type
- Normalisation
- Standard Query Language (SQL)
- Transactions & Rules
- Security & Backup
- Functions & Operators

properties

shape owner

polygon Jean

polygon Pierre

polygon Marc

properties

geometry owner

polygon Jean

polygon Pierre

polygon Marc

shapefile spatial DB

districts

geometry id

polygon AB12

polygon CF34

polygon RT43- Functions & Operators
(intersect(), within(), area(),
=, &&, etc…)

- What is the area — and who is the owner — of properties located in district AB12?

• IBM DB2 Spatial Extender, Informix Spatial DataBlade, Oracle Spatial,
PostgreSQL/PostGIS, ESRI's ArcSDE, Intergraph's GeoMedia

• What about raster?

polygon Marc

polygon Jean

… …

polygon Marc

polygon Jean

… …

SELECT area(geometry), owner FROM properties, districts
WHERE intersect(properties.geometry, districts.geometry) and district.id = “AB12”

polygon RT43

polygon RE42

… …

• We have to be able to store not only “ideal”
rectangular raster datasets…

landcover
tileId raster

Raster Support Requirements
1 - Storage of Non Rectangular Raster Coverage

“Ideal” Raster Dataset

“Real” Raster Dataset

• …but also “real” non-rectangular
raster coverages

tileId raster
1 rasterBLOB
2 rasterBLOB
3 rasterBLOB
4 rasterBLOB
5 rasterBLOB
… …
53 rasterBLOB
54 rasterBLOB

e.g. SRTM Coverage for Canada

Raster Support Requirements
2 - Easy Importation/Exportation

PostgreSQL
PostGISimport export

ecological layers

The way to import raster layers should not differ
much from the way to import vector layers…

Raster Support Requirements
3 - SQL Functions & Operators on the Raster Type

• Raster Attributes
- area(), srid(), width(), height(), pixeltype(), pixelsize(),

nodatavalue(), georeference(), etc…

• Raster Transformation
- reproject(), translate(), scale(), resample(), clip(), reclass(),

mapalgebra(), etc…

• Raster Aggregation
- Merge of many rasters using GROUP BY (accum())

• Raster Conversion
- toJPEG(), toTIFF(), to KML(), toPolygon()…

• Categorical rasters layers convert
well to vector layers
- one variable converts to one column
- groups together pixels of same value
- contiguous or not
- continuous raster layers do not convert as well

• Vector layers do not convert well to raster layers

Raster Support Requirements
4 - Lossless Conversion Between Vector and Raster Layers

ve
ct

or
is

at
io

n

landcover
geometry type
polygon 4
polygon 3
polygon 7

landcover

landcover

• Vector layers do not convert well to raster layers
- each attribute (e.g. type) must be

converted to one raster
- no support for nominal values (e.g. “M34”)
- global values (area) lose their meaning
- overlaps are lost
- resolution must be high to match vector

precision
- features lose their unique identities
- reconversion to the original vector is very difficult or impossible

ra
st

er
is

at
io

n

polygon 7
… …

landcover
geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56

… … … …

mapsheet
area

We need a better way to convert vector layers to rasters without destroying the objects’ identities

• In a vector layer, each object has its own identity
landcover

geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56
polygon 9 M34 24.54
polygon 5 M33 23.43
polygon 2 M32 12.34

… … … …

Raster Support Requirements
4 - Lossless Conversion Between Vector and Raster Layers

• In a raster layer converted from a vector layer, each object should conserve its
own identity

- Each “raster object” has its own georeference
- Black pixels are “nodata values”
- Like vectors, raster objects may or may not overlap
- Raster algorithms can be used on the whole layer after a “blend” of the objects into a single raster

landcover
raster type mapsheet area
raster 4 M34 13.34
raster 3 M33 15.43
raster 7 M33 10.56
raster 9 M34 24.54
raster 5 M33 23.43
raster 2 M32 12.34

… … … …

Rasters become just another way to store
geographic features in a more expressive

vector object-oriented-like style

• The goal is to be able to use a single set of SQL functions & operators
without worrying if data are stored in vector format or raster format.

- Same deployment strategy (SQL)
- No longer need to implement overlay operations in two different ways

Raster Support Requirements
5 - Seamless Spatial Operators & Functions

on Vector and Raster Types

cover
geom ctype

observation
geom obsid

result
geom obsid ctype

∩∩∩∩
area

observation
geom obsid

cover
raster ctype

- area(), intersections(), buffer(), within(), overlaps(), reclass(), transform(),
centroid(), and many more…

geom ctype
polygon 4
polygon 3
polygon 5
polygon 2

… …

geom obsid
point 24
point 31
point 45

… …

geom obsid ctype
polygon 24 4
polygon 53 3
polygon 24 5
polygon 23 2

… … …

SELECT Intersection(Buffer(observation.geom, 1000), cover.geom) as geom, obsid, type
FROM observation, cover
WHERE Intersects(Buffer(point.geom, 1000), cover.geom)

∩∩∩∩ �

area
10.34
11.23
14.23
9.45
…

SELECT geom, obsid, ctype, Area(geom) as area FROM (

) result

geom obsid
polygon 24
polygon 31
polygon 45

… …

raster ctype
raster 4
raster 3
raster 5
raster 2

… …

Raster Support Requirements
6 - Storage of Raster Outside of the Database

• Goals:
- Provide faster access to raster files (JPEGs) for web applications
- Avoid useless database backup of large non-edited datasets
- Avoid importation (copy) of large datasets into the database

Web server

landcover
raster
raster
raster
raster
raster

…

Web server
Web service

SQL

Image01.jpg

JPEGs

Image02.jpg
Image03.jpg
Image04.jpg

…

Raster Support Requirements
What about Oracle GeoRaster?

• Stored as a relation between two types in different tables:
- images (SDO_GEORASTER for type, extent, rasterTable, id, metadata)
- blocks (tiles) (SDO_RASTER for block information)

• Supports:

images
id SDO_GEORASTER
1 type, extent, rasterTable1, id, metadata
2 type, extent, rasterTable2, id, metadata
3 type, extent, rasterTable3, id, metadata

…

rasterTable3 (blocks)
id SDO_RASTER
1 id, pyrLevel, band, row, col, MBR, BLOB
2 id, pyrLevel, band, row, col, MBR, BLOB
3 id, pyrLevel, band, row, col, MBR, BLOB

…

rasterTable3 (blocks)
id SDO_RASTER
1 id, pyrLevel, band, row, col, MBR, BLOB
2 id, pyrLevel, band, row, col, MBR, BLOB
3 id, pyrLevel, band, row, col, MBR, BLOB

rasterTable3 (blocks)
id SDO_RASTER
1 id, pyrLevel, band, row, col, MBR, BLOB
2 id, pyrLevel, band, row, col, MBR, BLOB

- bitmap mask
- two compression schemes
- three interleaving types
- multiple dimensions
- embedded metadata (colour table, statistics, etc…)
- lots of unimplemented features

• PostGIS PgRaster adopts a very similar approach

… …3 id, pyrLevel, band, row, col, MBR, BLOB
…

2 id, pyrLevel, band, row, col, MBR, BLOB
3 id, pyrLevel, band, row, col, MBR, BLOB

…

Raster Support Requirements
Does the Oracle GeoRaster’s architecture fulfill our requirements?

Requirement Yes/No Comments

1) Non-rectangular raster
coverage

2) Easy import/export

3) SQL functions & operators

Yes but

No

Yes

Creates as many tables as there are
rasters. 1000 rasters = 1000 tables

Request manual table creation or
FME ($$$)

Although limited

Not really…

3) SQL functions & operators
on the raster type

4) Lossless vector/raster
conversion

5) Seamless vector/raster
spatial functions/operators

6) Out-DB Storage

Yes

No

No

No

Although limited

Really not designed for this…

PostGIS WKT Raster

Requirement Yes/No Comments

An Open Source project specifically designed to meet these requirements

1) Non-rectangular raster
coverage

2) Easy import/export

Into a single table.

Very similar to PostGIS shp2pgsql.exe &
pgsql2shp.exe (gdal2wktraster.py)

Yes

Yes

3) SQL functions & operators
on the raster type

4) Lossless vector/raster
conversion

5) Seamless vector/raster
spatial functions/operators

6) Out-DB Storage

ST_Width(), ST_Height(), ST_BandPixelType(),
ST_PixelSizeX(), ST_PixelSizeY(), ST_NumBands(),
ST_BandNoDataValue(), ST_GDALGeoTransform(),
ST_Resample(), ST_Clip(), ST_Reclass(),
ST_MapAlgebra(), ST_AsJPEG(), ST_AsTIFF(),
ST_AsPolygon(), etc…

Every raster (or tile) of a single coverage has its
own georeference and hence can overlap other
rasters.
ST_Area(), ST_SRID(), ST_Transform(), ST_Union(),
AT_Accum(), ST_AsKML(), ST_AsSVG(), ST_Translate(),
ST_Scale(), ST_Intersection(), ST_Intersects(),
ST_Within(), ST_PointOnSurface(), &&, etc…

Only filepaths are stored in the database.

Yes

Yes

Yes

Yes

PostGIS WKT Raster Status
• Contributions

- Initial code base developed by Sandro Santilli, funded by Steve Cumming (UL, Canada)
and Tyler Erickson (Michigan Tech Research Institute)

- Basic functions, python importer, overviews and regular tiling code: Mateusz Loskot
(CadCorp, UK)

- GDAL Driver foundation: Jorge Arevalo (Google Summer of Code spanish student)

• Version Beta 0.1 to be released soon. Will include:
- gdal2wktraster.py importer
- Overviews (multiresolution pyramids) support
- Accessor Functions (ST_SRID(), ST_Width(), ST_Height(), ST_PixelSizeX(), ST_PixelSizeY(),

ST_RotationX(), ST_RotationY(), ST_UpperLeftX(), ST_UpperLeftY(), ST_ESRIWorldFile(),
ST_GDALGeoTransform(), ST_NumBands(), ST_BandPixelType(), ST_BandNoDataValue())

- Basic Seamless Overlay Functions (ST_Intersects(), ST_Intersections(), ST_AsPolygon(),
ST_Envelope(), ST_Shape())

- Spatial operators identical to the one on the geometry type (&&, &<, etc…)

- Out-DB raster registration with gdal2wktraster.py
- Well documented web site (doc & wiki specs, http://trac.osgeo.org/postgis/wiki/WKTRaster)

• We also need your help! You can provide developer time or funds…

Introducing
WKT Raster « Raster Objects »

• The fact that every raster in a PostGIS WKT Raster table
has its own georeference and attributes, and is thus
independent of other rasters in the table, is a very
interesting characteric of those raster objects.

• Like vector geometries, raster objects:• Like vector geometries, raster objects:
- can overlap
- can change location
- can represent individual objects with their own identity

• Moreover, raster objects can be used to model real life
objects better represented as small fields (like fires or
fuzzy objects).

• Very new type of GIS object

Introducing WKT Raster Objects
Raster Objects vs Other GIS Objects

• Point and Line Coverages
• Polygon Coverages

- Objects represent a constant surface with an identity and
properties (like an object in a OO context)

• Raster Object Coverages
- Constant Raster Objects (categorical)

� Objects represent a constant surface with an identity and properties (like a
feature or an object)
Better modelled as polygon, but modelled as raster because they are better � Better modelled as polygon, but modelled as raster because they are better
processed using existing raster algorithms (eg. landcover, basin)

� E.g.: land use; land cover; traditional raster objects that should overlap but can’t
because they are in raster format (ex. buffers, animal territories)

- Variable Raster Objects (field)
� Objects represent a variable field that have an identity and properties
� Generally modelised as a unique raster and difficult to

model as polygons
� E.g.: fire, fuzzy objects (lakes, land cover, forest

stands, soil), area of influence, animal territories

• Traditional Raster Coverages
- Represent a variable field with

different values (no unique identity or other properties)
- E.g.: elevation, climate, etc…

Summary
• The Canadian Spatial Data Foundry should facilitate, via a web

service, GIS intersection operations over large-scale ecological
datasets (vector & raster)

• Oracle GeoRaster does not provide a good integration between raster
and vector layer

• PostGIS WKT Raster aims to provide such an integration
- Support non-rectangular raster coverages
- Lossless conversion between raster & vector layers
- Seamless operators & functions on raster & vector types
- Storage of raster outside the DB
- Easy import/export similar to shp2pgsql.exe
- We need your help!

• WKT Raster introduces a new kind of GIS raster objects that
are useful for modelling:

- categorical features needing raster algorithms
- fuzzy objects requiring their own identities

Thanks!

• http://trac.osgeo.org/postgis/wiki/WKTRaster

Boreal Avian
Modelling Project

