235 | | This makes PostGIS WKT Raster an abstraction level, not only over the raster format (like GDAL) or over the vector format (like OGR), but more generally over the two most used data structures in the geospatial industry (raster AND vector). Even if many operations performed on a vector object (e.g. all the functions working only on LINESTRING geometries) are not really possible to apply to raster objects, and if there are also some raster specific functions (e.g. ST_Resample() or ST_SetNoDataValue()) not working on vector objects, we think, and we will demonstrate as we extend PostGIS WKT Raster in the future, that most operations have their equivalent in both raster and vector worlds (e.g. ST_Intersections(), ST_Accum(), ST_Area(), ST_MapAlgebra()), even if this does not appear obvious at first sight. |
| 235 | This makes PostGIS WKT Raster an abstraction level, not only over the raster format (like GDAL) or over the vector format (like OGR), but more generally over the two most used data structures in the geospatial industry (raster AND vector). Even if many operations performed on a vector object (e.g. all the functions working only on LINESTRING geometries) are not really possible to apply to raster objects, and if there are also some raster specific functions (e.g. ST_Resample() or ST_SetBandNoDataValue()) not working on vector objects, we think, and we will demonstrate as we extend PostGIS WKT Raster in the future, that most operations have their equivalent in both raster and vector worlds (e.g. ST_Intersections(), ST_Accum(), ST_Area(), ST_MapAlgebra()), even if this does not appear obvious at first sight. |